首页> 外文OA文献 >Artificial Neural Network Modeling of Distillers Dried Grains with Solubles (DDGS) Flowability with Varying Process and Storage Parameters
【2h】

Artificial Neural Network Modeling of Distillers Dried Grains with Solubles (DDGS) Flowability with Varying Process and Storage Parameters

机译:具有变化过程和存储参数的带有溶剂的酒糟(DDGS)流动性的人工神经网络建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural network (NN) modeling techniques were used to predict flowability behavior of distillers dried grains with solubles (DDGS) prepared with varying levels of condensed distillers solubles (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), cooling temperatures (–12, 25, and 35°C), and storage times (0 and 1 month). Response variables were selected based on our previous research results and included aerated bulk density, Hausner ratio, angle of repose, total flowability index, and Jenike flow index. Various NN models were developed using multiple input variables in order to predict single-response and multiple-response variables simultaneously. The NN models were compared based on R2, mean square error, and coefficient of variation obtained. In order to achieve results with higher R2 and lower error, the number of neurons in each hidden layer, the step size, the momentum learning rate, and the number of hidden layers were varied. Results indicate that for all the response variables, R2 \u3e 0.83 was obtained from NN modeling. Compared with our previous studies, NN modeling provided better results than either partial least squares modeling or regression modeling, indicating greater robustness in the NN models. Surface plots based on the predicted values from the NN models yielded process and storage conditions for favorable versus cohesive flow behavior for DDGS. Modeling of DDGS flowability using NN has not been done before, so this work will be a step toward the application of intelligent modeling procedures to this industrial challenge.
机译:使用神经网络(NN)建模技术来预测用不同浓度的浓缩蒸馏酒可溶物(10%,15%和20%,wb),干燥温度(100、200和300°C),冷却温度(–12、25和35°C)和存储时间(0和1个月)。根据我们以前的研究结果选择了响应变量,包括充气体积密度,Hausner比,休止角,总流动性指数和Jenike流动指数。使用多个输入变量开发了各种NN模型,以便同时预测单响应和多响应变量。基于R2,均方误差和获得的变异系数比较了NN模型。为了获得更高的R2和更低的误差的结果,每个隐藏层中神经元的数量,步长,动量学习速率和隐藏层的数量都发生了变化。结果表明,对于所有响应变量,从NN建模获得R2 \ u3e 0.83。与我们之前的研究相比,NN模型提供的结果要好于偏最小二乘模型或回归模型,这表明NN模型具有更高的鲁棒性。基于来自NN模型的预测值的表面图得出了DDGS的有利流动和内聚流动行为的过程和存储条件。以前尚未使用NN对DDGS流动性进行建模,因此,这项工作将朝着将智能建模程序应用于这一工业挑战迈出一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号